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A new approach to determine the defect response signals from defects located in conducting objects of any size based on the
surface charge simulation method is presented in the framework of the Lorentz force eddy current testing. The results are verified
by FEM simulations and will be validated by measurements.
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I. INTRODUCTION

ELECTRODYNAMICS of moving media is one of funda-
mental problems in theoretical electromagnetics. There

is an essential need for efficient computation methods in
a variety of applications such as magnetic levitation, eddy
currents brakes, or electromagnetic damping and coupling.
The principle of motional induction is also utilized in the
framework of nondestructive testing (NDT) [1]. Methods based
on this principle are classified as motion-induced eddy current
testing (MECT) methods. One associated MECT method is
called Lorentz force eddy current testing (LET) [2]. In LET, the
object under test moves relative to a permanent magnet system,
which produces a stationary magnetic field. Its basic principle
is shown in Fig. 1. The interaction between the induced eddy
currents and the magnetic field results in a Lorentz force,
which acts on both the specimen and the magnet system
itself. In the presence of a defect the induced eddy currents
and hence the force signal are perturbed. The LET method
involves distinct line and surface scans of the object under
test. The prediction of the Lorentz force profiles necessitates
the application of numerical methods. The bigger the area

Fig. 1. Principle of Lorentz force eddy current testing.

to be evaluated, the more simulations have to be conducted.
Consequently, most efficient routines are needed to determine
the so-called forward problem in view of defect reconstruction.
Recent optimization studies showed that rather complicated
magnet systems (see Fig. 1), which include highly saturating
ferromagnetic materials such as iron-cobalt alloys may be ad-
vantageous compared to standard magnet geometries. However,
the implementation of nonlinear magnetic material significantly
increases the computational effort needed to determine the
force profiles numerically.

In this paper, an approach based on the principles of the
surface charge simulation method (SCSM) [3] is presented. The
field problem in the SCSM is described by surface integrals
of the Fredholm type of the first kind. The coefficients of
the distributed surface charges situated on the boundaries are
determined by fulfilling the imposed boundary conditions. The
SCSM is well known [4] but its application to electrodynamics
of moving media is only merely studied [5]. Owing the
recent developments in magnet optimization, we consider the
approach which is independent on the applied magnet system.
Particular attention is devoted to proof the validity of the
proposed approach by comparing the SCSM results to data
obtained by FEM. Additionally, the results are compared to
experimental data demonstrating the practical applicability and
accuracy of the proposed approach.

II. DESCRIPTION OF THE METHOD

The analysis of the LET system shown in Fig. 1 is performed
in the coordinate system attached to the magnet system (PM).
The state of the system is defined by vector fields B and E
under assumption that the velocity of the moving conducting
object is much less than the speed of light. Additionally, it is
assumed that the magnetic field associated with eddy currents
induced in the moving conductor is negligible in relation
to the imposed primary magnetic field produced by the PM
(weak reaction approach - WRA). This assumption is valid,
for example, for conductive objects made of aluminum and
moving with a speed of less than 0.5 m/s.



Fig. 2. Setup for the magnetic field B0 and the potential ϕ0 calculations.

Applying the WRA, eddy currents induced in a conductor
moving with the velocity v are determined from Ohm’s law

J = [σ](E + v ×B0), (1)

where [σ] = diag(σxx, σyy, σzz) is the electrical conductivity
tensor and B0 is the primary magnetic flux density produced by
the PM. The electric field E is expressed by the scalar electric
potential ϕ as E = −∇ϕ. In the SCSM, the potential ϕ at any
point r in the conductor of isotropic conductivity (σii = σ0)
is determined from

ϕ(r) = 1
4πε0

∫
S

κ(r′)
|r−r′|dS (2)

where κ(r′) is a surface charge density distributed over the
surface S (Fig. 1). For conductors characterized by anisotropic
conductivity (σxx = σyy = σ0, σzz = 0), the following
expression is used

ϕ(r) = 1
2πε0

∫
Γ

τ(r′) ln 1
|r−r′|ds+ ϕ0, (3)

where τ(r′) is a line charge density on the boundary line Γ
constructed as the intersection of surface S with the X0Y -
plane cutting centrally the defect (Fig. 1). The ϕ0 denotes the
scalar electric potential in the infinitely large plate of thickness
lz without defect. To find eddy currents (1), the set of N SCSM
equations is formulated using the condition n · J|S= 0 as

1
4πε0

N∑
i=1

κi

∫
Si

nj ·(rj−r′i)
|rj−r′i|3

dSi = −nj · (v ×B0j), (4)

for the isotropic case (κi = const on Si, S =
⋃N
i=1 Si) and

1
2πε0

N∑
i=1

τi

∫
Γi

nj ·(rj−r′i)
|rj−r′i|2

dsi = nj · (∇ϕ0j − v ×B0j), (5)

for the anisotropic one (τi = const on Γi, Γ =
⋃N
i=1 Γi).

To be independent on the PM system, it is assumed that the
primary field B0 is given on regular grid of points located in
the rectangular window W = {(x, y) : wx×wy} corresponding
to the top and the bottom surfaces of the moving conductive
block. The fields Bu

0 (x, y, 0) and Bd
0(x, y,−lz) in the window

W can be calculated by any method e.g. FEM. B0 and ϕ0

at any point P ∈ Ω, Ω = {(x, y, z) : W× < −lz, 0 >} are
determined by solving ∇2B0 = 0 and ∇2ϕ0 = 0 with the
boundary conditions shown in Fig. 2. The solution is obtained

Fig. 3. Defect response signals ∆F z
x calculated by FEM and the SCSM in the

vicinity of the defect dx×dy×dz = 12 mm×2 mm×2 mm located at a depth
d = 2 mm in the aluminum block lx× ly× lz = 50 mm×25 mm×10 mm.

by applying 2D spatial Fourier transform: B̃0(z) = FxFy(B0)
and Φ̃0(z) = FxFy(ϕ0). Having formulas for B̃0 and Φ̃0, the
fields (B0, ϕ0) at any plane z ∈< −lz, 0 > can be calculated
using the inverse Fourier transform B0(r) = F−1

x F−1
y (B̃0)

and ϕ0(r) = F−1
x F−1

y (Φ̃0).

III. RESULTS

To verify the SCSM, the following LET problem is solved
using FEM: the aluminum block of isotropic/anisotropic
conductivity σ0 = 21 MS/m with the ideal defect (σd = 0)
moves with the velocity v = 0.2 m/s under the magnet system
located at the lift-off distance of h = 1 mm. Fig. 3 shows the
defect response signals (DRS) defined as

∆F zx =
(
Fz

Fx
− F0z

F0x

)
100% � F =

∫
Ωc

J×B0 dV, (6)

calculated by FEM and the SCSM. It can be observed that
the DRS for the block with anisotropic conductivity is about 5
times bigger than for the block with isotropic conductivity. The
quantitative differences between FEM and the SCSM results,
expressed by the normalized root mean square error, are equal
ε1 = 1.91% and ε2 = 2.25%, for the isotropic and anisotropic
block, respectively.

IV. CONCLUSION

In the full paper, the comparison of the SCSM and FEM
will be extended and discussed. Moreover, the results will be
validated with measurements.
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